php中文网 | cnphp.com

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
搜索资源  
php中文网 | cnphp.com 资源中心 源码 数值算法 httpsarxiv.org abs 1802.09022中算法的实现.zip

资源分类

热门下载

httpsarxiv.org abs 1802.09022中算法的实现.zip

 

httpsarxiv.org abs 1802.09022中算法的实现:
【代码名称】: <https://arxiv.org abs 1802.09022>中算法的实现

【代码介绍】: <https://arxiv.org abs 1802.09022>中算法的实现

【代码截图】:文件列表:

algorithms.py (57343, 2020-07-18)
functions.py (1957, 2020-07-18)
logreg_a9a_full_grad.ipynb (808085, 2020-07-18)
logreg_a9a_stoch.ipynb (929122, 2020-07-18)
logreg_diabetes_full_grad.ipynb (1091151, 2020-07-18)
logreg_diabetes_stoch.ipynb (1037177, 2020-07-18)
logreg_heart_full_grad.ipynb (973277, 2020-07-18)
logreg_heart_stoch.ipynb (1033120, 2020-07-18)
logreg_phishing_full_grad.ipynb (850086, 2020-07-18)
logreg_phishing_stoch.ipynb (1016327, 2020-07-18)
logreg_w8a_full_grad.ipynb (744208, 2020-07-18)
logreg_w8a_stoch.ipynb (792361, 2020-07-18)
nesterov_n1000_big_sigma_variance_experiment.ipynb (3108620, 2020-07-18)
nesterov_n1000_no_noise_sparsity_experiment.ipynb (2820029, 2020-07-18)
nesterov_n1000_noise_experiment.ipynb (2188759, 2020-07-18)
nesterov_n1000_small_sigma_variance_experiment.ipynb (2265876, 2020-07-18)
nesterov_n100_big_sigma_variance_experiment.ipynb (3554981, 2020-07-18)
nesterov_n100_no_noise_sparsity_experiment.ipynb (2419868, 2020-07-18)
nesterov_n100_noise_experiment.ipynb (2390885, 2020-07-18)
nesterov_n100_small_sigma_variance_experiment.ipynb (2292619, 2020-07-18)
nesterov_n5000_small_variance_small_noise_sparse.ipynb (640426, 2020-07-18)
nesterov_n500_big_sigma_variance_experiment.ipynb (3344734, 2020-07-18)
nesterov_n500_no_noise_sparsity_experiment.ipynb (3087493, 2020-07-18)
nesterov_n500_noise_experiment.ipynb (2364238, 2020-07-18)
nesterov_n500_small_sigma_variance_experiment.ipynb (2359153, 2020-07-18)
utils.py (9767, 2020-07-18)



# An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization ## [arXiv](https://arxiv.org/abs/1802.09022) Implementation of the algorithms and experiments from the paper ***"An Accelerated Method for Derivative-Free Smooth Stochastic Convex Optimization"*** by Eduard Gorbunov, Pavel Dvurechensky, Alexander Gasnikov. ## Files * algorithms.py contains the implementations of the methods considered in the experimental part of the paper * functions.py contains implementation of basic oracles for Nesterov's function and logistic regression * utils.py contains functions for preparing data and plotting the results ## Jupyter Notebooks Each .ipynb file corresponds to the particular set of experiments with given dimension of the problem (for Nesterov's function) or given dataset. All datasets are taken from [LIBSVM library](https://www.csie.ntu.edu.tw/~cjl ... atasets/binary.html). ## How to run the code In order to run the code one needs to create folders "dump", "plot" and "datasets" in the same directory with jupyter notebooks, download corresponding datasets from LIBSVM library in txt-format, and put them in the folder "datasets".

【代码下载】:

QQ|php中文网 | cnphp.com ( 赣ICP备2021002321号-2 )

GMT+8, 2024-6-19 01:24 , Processed in 0.209345 second(s), 16 queries , Gzip On.

Powered by Discuz! X3.4 Licensed

Copyright © 2001-2020, Tencent Cloud.

申明:本站所有资源皆搜集自网络,相关版权归版权持有人所有,如有侵权,请电邮(fiorkn@foxmail.com)告之,本站会尽快删除。

返回顶部