admin 发表于 2022-10-15 09:20:27

Python实现鸢尾花分类

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn import datasets

np.random.seed(5)

centers = [, [-1, -1], ]
iris = datasets.load_iris()
X = iris.data
y = iris.target

estimators = {'k_means_iris_3': KMeans(n_clusters=3),
            'k_means_iris_8': KMeans(n_clusters=8),
            'k_means_iris_bad_init': KMeans(n_clusters=3, n_init=1,
                                              init='random')}

fignum = 1
for name, est in estimators.items():
    fig = plt.figure(fignum, figsize=(4, 3))
    plt.clf()
    ax = Axes3D(fig, rect=, elev=48, azim=134)

    plt.cla()
    est.fit(X)
    labels = est.labels_

    ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=labels.astype(np.float))

    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
    ax.set_xlabel('Petal width')
    ax.set_ylabel('Sepal length')
    ax.set_zlabel('Petal length')
    fignum = fignum + 1

# Plot the ground truth
fig = plt.figure(fignum, figsize=(4, 3))
plt.clf()
ax = Axes3D(fig, rect=, elev=48, azim=134)

plt.cla()

for name, label in [('Setosa', 0),
                  ('Versicolour', 1),
                  ('Virginica', 2)]:
    ax.text3D(X.mean(),
            X.mean() + 1.5,
            X.mean(), name,
            horizontalalignment='center',
            bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, ).astype(np.float)
ax.scatter(X[:, 3], X[:, 0], X[:, 2], c=y)

ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
ax.set_xlabel('Petal width')
ax.set_ylabel('Sepal length')
ax.set_zlabel('Petal length')
plt.show()
页: [1]
查看完整版本: Python实现鸢尾花分类